Nginx限流模块limit_req_zone、limit_req_conn
当前位置:点晴教程→知识管理交流
→『 技术文档交流 』
导读 本文详细解读了Nginx的漏桶算法和令牌桶算法在限制请求速率和并发连接上的原理及配置,包括limit_req_zone和http_limit_conn_module的实际应用,以及如何自定义返回值和处理突发流量。通过实例演示,展示了如何灵活调整以应对不同场景的需求。 根据nginx官网提供的说法,有两种算法,一种是漏桶算法,一种是令牌桶算法。
我这里存放在php中,对于静态资源全部都会走cdn所以没必要,只有动态资源,才会走这里,所以,我这里直接在php模块里面设置 设置搜索引擎例外
这里,客户端IP地址作为关键。请注意,不是$ remote_addr,而是使用$ binary_remote_addr变量。 $ remote_addr变量的大小可以从7到15个字节不等。存储的状态在32位平台上占用32或64字节的内存,在64位平台上总是占用64字节。对于IPv4地址,$ binary_remote_addr变量的大小始终为4个字节,对于IPv6地址则为16个字节。存储状态在32位平台上始终占用32或64个字节,在64位平台上占用64个字节。一个兆字节的区域可以保持大约32000个32字节的状态或大约16000个64字节的状态。如果区域存储耗尽,服务器会将错误返回给所有其他请求。
上述规则限制了每个IP访问的速度为2r/s,并将该规则作用于根目录。如果单个IP在非常短的时间内并发发送多个请求,结果会怎样呢? 监测服务器nginx日志
压测前后的对比,这里是压测工具是ab压测工具,具体用法看这篇文章 使用单个IP在10ms内发并发送了6个请求,只有1个成功,剩下的5个都被拒绝。我们设置的速度是2r/s,为什么只有1个成功呢,是不是Nginx限制错了?当然不是,是因为Nginx的限流统计是基于毫秒的,我们设置的速度是2r/s,转换一下就是500ms内单个IP只允许通过1个请求,从501ms开始才允许通过第二个请求。 我们看到,我们短时间内发送了大量请求,Nginx按照毫秒级精度统计,超出限制的请求直接拒绝。这在实际场景中未免过于苛刻,真实网络环境中请求到来不是匀速的,很可能有请求“突发”的情况,也就是“一股子一股子”的。Nginx考虑到了这种情况,可以通过burst关键字开启对突发请求的缓存处理,而不是直接拒绝。
我们加入了burst=4,意思是每个key(此处是每个IP)最多允许4个突发请求的到来。如果单个IP在10ms内发送6个请求,结果会怎样呢? 相比实例一成功数增加了4个,这个我们设置的burst数目是一致的。具体处理流程是:1个请求被立即处理,4个请求被放到burst队列里,另外一个请求被拒绝。通过burst参数,我们使得Nginx限流具备了缓存处理突发流量的能力。 但是请注意:burst的作用是让多余的请求可以先放到队列里,慢慢处理。如果不加nodelay参数,队列里的请求不会立即处理,而是按照rate设置的速度,以毫秒级精确的速度慢慢处理。 实例三 nodelay降低排队时间 实例二中我们看到,通过设置burst参数,我们可以允许Nginx缓存处理一定程度的突发,多余的请求可以先放到队列里,慢慢处理,这起到了平滑流量的作用。但是如果队列设置的比较大,请求排队的时间就会比较长,用户角度看来就是RT变长了,这对用户很不友好。有什么解决办法呢?nodelay参数允许请求在排队的时候就立即被处理,也就是说只要请求能够进入burst队列,就会立即被后台worker处理,请注意,这意味着burst设置了nodelay时,系统瞬间的QPS可能会超过rate设置的阈值。nodelay参数要跟burst一起使用才有作用。 延续实例二的配置,我们加入nodelay选项:
单个IP 10ms内并发发送6个请求,结果如下: 跟实例二相比,请求成功率没变化,但是总体耗时变短了。这怎么解释呢?实例二中,有4个请求被放到burst队列当中,工作进程每隔500ms(rate=2r/s)取一个请求进行处理,最后一个请求要排队2s才会被处理;实例三中,请求放入队列跟实例二是一样的,但不同的是,队列中的请求同时具有了被处理的资格,所以实例三中的5个请求可以说是同时开始被处理的,花费时间自然变短了。 但是请注意,虽然设置burst和nodelay能够降低突发请求的处理时间,但是长期来看并不会提高吞吐量的上限,长期吞吐量的上限是由rate决定的,因为nodelay只能保证burst的请求被立即处理,但Nginx会限制队列元素释放的速度,就像是限制了令牌桶中令牌产生的速度。 看到这里你可能会问,加入了nodelay参数之后的限速算法,到底算是哪一个“桶”,是漏桶算法还是令牌桶算法?当然还算是漏桶算法。考虑一种情况,令牌桶算法的token为耗尽时会怎么做呢?由于它有一个请求队列,所以会把接下来的请求缓存下来,缓存多少受限于队列大小。但此时缓存这些请求还有意义吗?如果server已经过载,缓存队列越来越长,RT越来越高,即使过了很久请求被处理了,对用户来说也没什么价值了。所以当token不够用时,最明智的做法就是直接拒绝用户的请求,这就成了漏桶算法。 示例四 自定义返回值
默认情况下 没有配置 status 返回值的状态: 自定义 status 返回值的状态: 阅读原文:https://blog.csdn.net/baidu_38432732/article/details/120060536 该文章在 2025/8/20 15:12:35 编辑过 |
关键字查询
相关文章
正在查询... |